The square root of a positive self-adjoint operator
نویسندگان
چکیده
منابع مشابه
Correspondence of the eigenvalues of a non-self-adjoint operator to those of a self-adjoint operator
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many real eigenvalues which accumulate only at ±∞. We use this result to determine the asymptotic distribution of the eigenvalues and to compute some of ...
متن کاملSpectral Behaviour of a Simple Non-self-adjoint Operator
We investigate the spectrum of a typical non-selfadjoint differential operator AD = −d2/dx2 ⊗ A acting on L(0, 1) ⊗ C, where A is a 2 × 2 constant matrix. We impose Dirichlet and Neumann boundary conditions in the first and second coordinate respectively at both ends of [0, 1] ⊂ R. For A ∈ R we explore in detail the connection between the entries of A and the spectrum of AD, we find necessary c...
متن کاملOn the square root of quadratic matrices
Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.
متن کاملThe Adjoint of a Composition Operator
The adjoint of a composition operator on H2 induced by a rational function is computed explicitly as a multiple valued weighted composition operator. This computation is based on an expression for the adjoint of a composition operator on the Hardy space, and many other functional Hilbert spaces, as an integral operator. The formula for the adjoint of a composition operator on H2 with rational s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1968
ISSN: 0004-9735
DOI: 10.1017/s1446788700004560